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Abstract We investigate the behaviour of a hydrogen atom in interaction with the surface 
of a polar semiconductor. The proton is cansidered as s a c  and we calculate the binding 
energy of an electron that cannot penehate the semicanductor. The interaction of the eledron 
with the surface is described microscopically in terms of electron-phonon and electron-excilon 
interactions. The electron ground-state energy is calculated using a variational Green function 
Fock approximation. We find that, when the proton approaches the surface, the elechon binding 
energy decreases dramatically. This decrease is govemed by three factors: the deformation of 
the electron wavefunction that has to vanish at the surface, the screening of the proton charge 
by the induced dipole moments on the surface and the a m t i o n  of the electron to the surface 
by its image potential. The first effect is found to be the most important when the proton is 
outside the semiconductor. When the proton is inside the semiconductor, the electron is in a 
surface image slate and the last effect is dominant. 

1. Introduction 

In this paper, we study the interaction of a hydrogen atom with the surface of a polar 
semiconductor. We focus more specifically on the long- and medium-range effects of the 
surface on the electron binding energy. We do not directly investigate the chemisorption 
itself, the process occuning on the surface involving a mixing of atomic orbitals. The 
problem is thus modelled as a hydrogen atom interacting with a continuous, polarizable 
medium occupying half-space. The medium is considered as impenetrable to the electron: 
the vacuum Ievel lies in the middle of an energy gap. Only the electronic energy is 
considered. We consider all the possible positions for the proton: inside or outside the 
crystal. Three effects are analysed: the vanishing of the electron wave function at the 
boundary, the screening of the proton charge by the semiconductor and the behaviour of the 
electron in its image potential. Our purpose is to investigatethe interrelation between these 
three effects and to evaluate their relative importance for different positions of the proton. 
A microscopic approach is used in the paper: the polarization of the crystal is described 
in terms of an interaction of the electron with the elementary excitations of the crystal that 
give rise to dipolar moments. 

The problem of a hydrogen atom in a semi-infinite space was first studied by Levine 
in an inert medium for a proton lying on the interface [l]. Later, Shan et a1 solved 
the problem analytically for an arbitrary position of the proton [2]. More recently, the 
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problem was also solved for semi-infinite spaces limited by paraboloidal, hyperboloidal 
or conical shapes 131. The more complex problem of a polarizable medium with a plane 
interface was studied by Babiker and Tilley who used a static point of view [4]. They 
treated the interaction of the electron and of the proton with the surface in the framework 
of an electrostatic approach they used the image potential formalism 151. They wrote 
a SchrBdinger equation for an electron interacting with its image charge, with the proton 
and with the image charge of the proton. They then solved this equation numerically for 
a large static dielectric constant. They obtained the electron ground-state energy and a 
few excited states for different positions of the proton. They concluded that the surface 
image states were important for describing the electron behaviour when the electron is in 
the neighbourhood of the surface. 

In this paper, we want to study the interaction of the electron with the proton and with 
the surface dynamically, from a microscopic point of view. The interaction with the surface 
is described in terms of electron-phonon and electron-exciton coupling, the two sources of 
polarization in a polar semiconductor. The proton is treated statically, while the electron, 
being much lighter, is treated dynamically. The surface effects related to the formation of a 
chemisorbed state are neglected. The Fock approximation of Matz and Burkey 161 is used 
to obtain an upper bound to the ground-state energy of the electron. This approximation 
was previously used to calculate the binding energy of surface states in semiconductors and 
was found to give good results 171. Also, in the present case, the electronic recoil effects 
in the z-direction are neglected and a Gaussian spectrum is used as a variational unsufz to 
simplify the calculations. 

In the next section, we derive the microscopic Hamiltonian describing the above system. 
The Frohlich Hamiltonian is used as a starting point to describe the electron-phonon and 
electron-exciton interactions [8, 91. We then calculate the electron ground-state energy 
using the Fock approximation. We discuss the limitations of the approach used. In section 
3, we present the asymptotic limits of the ground-state energy. Three limits are considered: 
far inside or outside the crystal and on the surface. In section 4, we present ow numerical 
calculations, the analytical expression for the electron energy being too complicated to be 
directly interpreted. We give the value of the energy and of the variational parameters as a 
function of the position of the proton and of the dielectric constants. We also decompose this 
energy into its three components to understand the different contributions to the ground-state 
configuration. We finally conclude by summarizing and discussing the above results. 

A Eimahboubi mad Y Lkpine 

2. The Hamiltonian 

We consider an electron and a proton (a hydrogen atom) in interaction with the impenetrable 
surface of a polar crystal. The surface is thus modelled as an infinite banier. The interaction 
of the electron and of the proton with the surface is described microscopically in terms of 
an electron-surface phonon and of an electron-surface exciton interaction. The electron 
interaction with the bulk modes does not appear here, the corresponding dipolar moments 
vanishing outside the crystal [lo]. The crystal lies in the z c 0 half-space, while for z 0, 
we have the vacuum. We also consider the proton to be at rest, its mass being much larger 
than that of the electron. Consequently, only the electronic dynamics is treated in the present 
paper. 

The corresponding Hamiltonian is written in terms of T = ( p ,  z) ,  the electronic position, 
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and of T~ = (0, 0, z p ) ,  the coordinates of the proton [7, 111: 

- [Gbi E.pbQ,i Sin(qzZp)@(-Zp) + HC]. 
Q.i 

t In this Hamiltonian, aq.i and aq,i are the annihilation and creation operators for surface 
phonons (i = 1, energy fio,~) and surface excitons (i = 2, energy h o , ~  (GS2 = ms2/os1)) 
of two-dimensional wavenumber q. The corresponding b operators refer to the bulk 
excitations of three-dimensional wavevector Q (with energy hob1 (Ob1 = Wbl/&) and 
Aob2 (Gb2 = @b2/011)). We use a dimensionless system of units for which the energies are 
given in terms of Ao,l, the lengths in units of the phonon polaron radius r,, and the masses 
in units of he. O(z)  is the step function and, for the surface modes, 

= - i d ~ w r d S q  S Z , ~  = -id2zffs~r,z/Sq 

v,,Q = -id4Jrffblrbl/vQ2 v2.~ = -i~43Cffbzrbz/vQ2 

ffbl = e2 (1/& - I/€$) ffb2 = e2 (I - I / E ~ )  Jz (3) 

rbl = 4mGG rb2 -. 
In these expressions and E, are the static and high-frequency dielectric constants. wSj 

and f fb j  are the different electron-elementary excitation coupling constants while r,i and rbi 
refer to the different units of length in the polaron problem. V is the volume of the crystal 
while S is the area of its surface. Finally, we have that the dimensionless Rydberg of the 
hydrogen atom is given by 

2 

R=(&) (4) 

The first line of this Hamiltonian contains the electron kinetic energy, the free phonon 
and free exciton fields and the potential of a single electron interacting with a proton 
through a Coulomb field. The first term of the second l i e  describes the interaction of the 
electron with the surface phonon and exciton fields. The second term describes the same 
interactions for the proton. The last line of H describes the interaction of the proton with 
the bulk modes. This term is present only if the proton is inside the crystal. The terms 
containing an interaction of the proton with the excitations of the solid can be diagonalized 
exactly using the Platzman transform [12]: 
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This transform leads to a screening of the proton charge as seen in the resulting Hamiltonian: 
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H’ = p2 + mbiB$,iBQ.i - + C & A z i A q . i  
Q.i q.i 

where 

and 
I(€$ - WAG + l)P/@mslrsl 4 1 ~ ~ 1 )  I -[(es - WG + 1)P/@mSrs1 412~1)  

ZJii 

ifz, < 0 

ifzp > 0. 
Hi, = 

For a defect localized at the surface of the crystal (z, = 0), H‘ becomes 

+ Z&iB$ , iBQ, i  +C&iA:iAq.i  U) H’(z, = 0) = p2 - 
(G + o r  Q,i 9.i 

[ G ~ ~  .Y;,~A.+~ ei*P e-qlzl + cc] . + 
9.i 

For z = 0, this Hamiltonian is identical to that studied by Gagnon and IRpine [13]. 
H’ is now the Hamiltonian of an external electron interacting with a proton and with 

surface phonons and excitons. Hp describes the screened Coulomb potential of the proton 
if z,, < 0 while for zp > 0 it consists in the usual vacuum Coulomb potential to which an 
interaction with the proton image charge has been added. Hi, describes the interaction of 
the proton with its image charge 151. This contribution is a constant for a fixed position 
of the proton. It does not interfere with the electronic dynamics. ConsequentIy, it will be 
discarded in the following calculations. We can compare this Hamiltonian to that used by 
Babiker and Tilley [4]. For zp > 0, Hp and Him are identical to the corresponding terms 
found in this paper. However the electron-surface interaction is treated macroscopically 
by the above authors (image potential approach). In our case, this interaction is heated 
dynamically, from a microscopic point of view, in terms of electron-phonon and exciton 
interactions. 

The ground-state energy of the above Hamiltonian is calculated using the Pock 
approximation of Matz and Burkey [6]. This approximation gives an upper bound to the 
ground-state energy of the Hamiltonian. It is written in terms of the eigenstates ({Yv(r)})  
of a model Hamiltonian HM. This formalism can treat the recoil of the electron interacting 
with the phonons and the excitons dynamically as has been shown by Elmahboubi and 
L6pine [7]. It has been previously used to describe an external electron interacting with the 
surface of a polar crystal 171. In the present case, this approximation is written as 

Eo = / d3r Y ~ ( T )  [p2 + Hp] Yo(T) + / d3rd3r’ l~~iSi,q12e-p(lzl+’r‘l)ein.(p-p’) 
“A7 

(8) 
X %(WIT: (T’) Yo(T’) Y;IToL(T) 
Eo - E ,  - &i 

the summation over U being a summation over three quantum indices I ,  m, n. 
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In the z-direction, the electronic wavefunction is always localized. Far from the surface, 
it is localized because of the presence of the proton. In the neighbourhood of the surface, it 
is localized because of its interaction with its image charge. Consequently, the ground-state 
energy is well separated from the excited states for the z-component of the wavefunction 
(assuming a model wavefunction that is separable). If the quantum index U is expanded into 
three indices 1, m, n, the sum over n,  the quantum index associated with the z-component 
of the wavefunction, can then be limited to n = 0, the other terms of the summation being 
much smaller. This is equivalent to neglecting the electronic recoil in the z-direction [7]. 
It was shown that this approximation can lead to an underestimation of about 10 to 15% 
for an electron near a surface. In the present case, because of the localizing power of the 
defect, we expect this approximation to be much better. With this approximation, EO is 
written as 

Eo = J d3r %,o,o(T) [P2  + HP] ~O,O.O(T) 
d3r d3r' 12 e-Y(kl+lZ'l) eivb-d) 

To calculate this energy, we write WI.~ .O(T)  = @(,,,,(x, Y)+~(Z) and use, for @,.,,,(x, y). 
a simple two-dimensional harmonic oscillator with j3 as a variational parameter: 

In the z-direction the wavefunction has to vanish at z = 0 and &(z) is written as 

@o(z) = N(6/fi)1/226z exp(-S2(z - zdZ/2) (11) 

where N, the normalization constant is 

where erfc(x) is the complementary error function. This wavefunction vanishes for z 6 0 
because of the infinite' barrier at the surface. It corresponds to a bulk harmonic oscillator 
in its ground state, centred on ze if the electron is far from the surface (we then expect 
the electron wavefunction to be centred on the proton (z, = z,)). If the electron and the 
proton are close to the surface, or if the proton is inside the semiconductor, we expect to 
find zc = 0. &(z) is then the ground-state wavefunction of a half-space harmonic oscillator 
tied at z = 0 and interacting with an infinitely repulsive barrier [7]. In the following, j3, 6 
and ze are considered as variational parameters. Also, we find for the root mean square 
distance of the electron from the surface 

For zc = 0, this is equal to 3/(2S2) while for ze -+ 00, we find that it is equal to z:. 
With these wavefunctions, Eo is obtained from equation (9): 

Eo = Ek + ED + E,. (14) 
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In this equation, the kinetic energy (Ek) is 
1 

Ek = ~2 [ %(P + ZBZ) exp(-J2zz) + p f i 2  + 382 + ( 4 ~ 2 8 2  + p)z:)erfc(-sz,) . 

The contribution of the defect (E,) is 
(15) 

1 
- 8 N 2 g s 3 ~ ~ m d z z 2 e x p ( - ~ 2  0 (z - b)2)erfce@lz -z,,l) ifz, t o  

.J;; 

-8N2 p 63 Eh* Sm dz zz exp(-S2 (z - ze)2)erfce(@lz f ql) if zp > 0 
[ 

+ o  

(16) 
where 

In the above equations, erfce(x)=ex2erfc(x). 

electron with the excitations of the surface. It is given by 
The last component of the ground-state energy is Es. the energy of interaction of the 

where 

For ze = 0, this expression reduces to that previously obtained by Elmahhoubi and Lgpine 
to study the electronic surface states near an impenetrable surface [7]. 

3. Asymptotic limits 

It is of interest to estimate a few aiymptotic limits of the above expressions to gain an 
insight into the approximations that have been made. First, we consider the limit when the 
proton is far from the interface, outside the crystal (z, + 03). Then, we expect that ,,g zz 6 
and zc k z,. We find 

After minimization, we have 

8R 
3n Eo = -- + O  (i). 
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where R is the hydrogenic Rydberg (13.6 eV). This energy corresponds to the variational 
ground-state energy of a hydrogen atom when calculated with a Gaussian wavefunction 
instead of a coulombic wavefunction (--8R/3n = -11.5 eV, in dimensional units). The 
hydrogen atom is unperturbed by the surface, as expected. The corrections to this energy 
(in 1/z,2) arise from the interaction of the electron with its image charge and with the image 
charge of the proton. 

If the proton is far inside the crystal, E,, becomes (z. = 0 ahd z,, + CO): 

This is simply the electrostatic energy between the electron and the proton. It becomes 
rapidly negligible because of the screening and of the l/zp behaviour [7]. In this limit, the 
dominant contribution to the ground-state energy comes from E,, the surface energy; the 
electron is bound in a surface image state and the proton has little influence on its energy. 

When the proton is on the surface, we expect to have ze = zg = 0. The ground-state 
energythen becomes 

erf=(Pz) 
3 
2 

Eo = 0’ + -6’ - Sg6 

If the defect is neglected (A0 = 0) and if the strong-coupling limit is taken ( B  = p), this 
expression is identical to that found by Elmahboubi and Lipine [7] for the binding energy 
of an electron surface state in the strong-coupling h i t .  If we neglect the interaction of the 
electron with the polar excitations (asi = 0), we find that the minimum lies at p = S. The 
integration and &e final minimization gives 

Eo = -= (-)’% 2 -0.238 (-) 2 ’  
4% + 1 €s + 1 

If = 1, this is the ground-state energy of a hydrogen atom in a semi-infinite space lying 
on the interface and calculated variationally with Gaussian wavefunctions. This is to be 
compared with the exact result: EO = -R/4 [l ,  21. 

We also consider, as a reference, the two-dimensional case, when the electron is 
constrained to move in the plane of the surface ( z  = 0). This limit can be obtained 
from equation (24) by taking the 6 + 00 limit and by discarhing the z-component of the 
kinetic energy. We then find 

This expression is identical to that obtained by Gagnon and Lipine [I31 for the surface 
polaron bound to a defect if the excitonic part (i = 2), which was not treated in that paper, 
is discarded. 

From these results, we can summarize the behaviour of the above system in the following 
way; When the proton is far outside the crystal, the ground-state energy is simply that of a 
hydrogen atom to which a negligible contribution from the surface polarizability (in l/zj) 
is~added. When the proton gets nearer to the surface, the electron wavefunction is deformed 
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in the z-direction, because it has to vanish at z = 0. If the crystal is not polarizable, the 
binding energy (=-EO) is then reduced by a factor of four when the proton is on the surface 
[I]. If the crystal is polarizable, the electronic energy is further modified, because of two 
effects: the proton charge is screened by its image charge (this has the effect of reducing 
the binding energy) and the electron self-energy is increased due to an interaction with its 
image charge 14, 71. Finally if the proton is far inside the crystal, the electron is bound into 
a surface image state [7]; the effect of the proton is then negligible due to screening and to 
its distance from the electron. 

A Elmahboubi and Y Upine 

4. Numerical results 

The ground-state energy cannot he analysed analytically for the general case. However, 
equation (14) can be analysed numerically. The following graphs have been calculated for 
parameters representative of a semiconductor: h w , ~  = 0.1 eV, hwsz = 3 eV and sm = 2. 
In figure 1, we have plotted the electron ground-state energy as a function of the position 
of the proton (z,) for es = 2.1, 6.0 and 20. We observe that, when the proton is far outside 
the crystal, its binding energy depends only weakly on the dielectric constant and is given 
by equation (22). When the proton approaches the surface, the binding energy decreases 
rapidly, due to screening effects and because the wavefunction cannot penetrate the surface. 
This decrease does not depend strongly on the dielectric constants: the distance at which 
the screening effects occur (at about one Bohr radius from the surface) does not depend on 
eS. When the proton is on the surface, the electron energy depends moderately on the static 
dielectric constant. The screening effects are then at their maximum. Finally when the 
proton penetrates the solid, the electronic binding energy continues to decrease because the 
distance between the positive and the negative charge increases. Note that, on this graph, 
the largest binding energies are obtained for the smallest dielectric constant (2.1) since the 
screening effects are then smaller. If the curves were extended to larger negative values 
of z,,, the ground-state energy would tend to the image surface state value as given by 
Elmahboubi and Upine 171. The order of the curves in this limit would be inverted since 
a large dielectric constant favours the image state. 

In figure 2, we plot the two variational parameters p and 6 as a function of 2,. for the 
same set of parameters as in figure 1. We find that far outside the crystal the two parameters 
are equal. They have the value predicted for a hydrogen atom as obtained from a variational 
Gaussian spectrum. When the proton approaches the surface, the electron wavefunction in 
the z-direction is compressed on the surface side of the proton. To reduce the kinetic 
energy, 8 decreases and B increases to maximize the binding energy. This explains the 
peak in p for z,, near 0.2. This maximum depends only on the distance from the surface 
and is independent of the dielectric constants. When the proton is on the surface, 6 becomes 
larger than @ because the image potential has the same order of magnitude as the Coulomb 
potential (screened by the surface polarizability) and affects only the value of 6 .  Note that, if 
the surface could not be polarized, both parameters would be equal (equation (25)). Finally, 
when the proton penetrates the crystal, the electronic state tends toward the image state and 
both parameters decrease, with S staying larger than p 171. 

In figure 3, we plot ( z * ) ' / ~  as a function of z,, for the same parameters. It can be 
seen that (zz)'p = zp when the proton is far outside the surface (for z,, z 0.1 or one Bohr 
radius). When the proton approaches the surface (within one Bohr radius), the proton charge 
screening becomes important and the electron can no longer follow the proton because of 
the surface harrier. Consequently, (z~)'/~ increases rapidly toward an equilibrium distance 
determined by the position of the electron with respect to the surface and to the proton. 
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Figure 1. Ground-state energy of the electron a a 
function of z,, the distance of the proton from the 
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Figure 3. Mean distance of the proton from the 
surface ((z*)~'*) as a function of z,,. the distance of 
the proton from the'surface, for ea = 2.1. 6.0 and 20. 
AI1 quantities are in the polaron system of units. 
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Figure 4. Ground-state energy of the electron as a 
function of z,,, the distance of the proton from the 
surface, (3) for fs = 6.0, em = 2.0 with fis = 0 (darted 
line). (b) for e, = 6.0. 6, = 2.0 and E, # 0 (dashed 
line) and (c) fore' = e, = 1 (full curve). All quantities 
are in the polaron system of units. 

Finally, when the proton is inside the crystal, the electron is in a bound surface image 
state at a distance of approximately one polaron radius from the surface (in this case, 
(z2)1/2 = m/S). Its position then becomes independent of the position of the proton. 
Note that for zp  5 0.1, ze minimizes to zero while for z ,  2 0.1, we find z, = z,. 

These results can be compared to those of Babiker and Tilley who treated the same 
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problem by solving numerically a Hamiltonian involving an electron in interaction with 
a proton, with the image charge of the proton and with its own image charge [4]. They 
found results very similar to ours: a hydrogenic ground-state energy far from the surface 
and a surface image state when the proton is on the surface. They also found that the 
electron wavefunction extension was wider in the direction parallel to the plane than in the 
z-direction, when the proton is on the surface. This is compatible with our result that S is 
larger than ,9 when the proton is on the surface. 

It is of interest to analyse the different contributions to the ground-state energy of the 
electron. In figure 4, we plot this energy as a function of z,,, for zp  > 0. The curves are 
drawn for three cases: (a) for es = 6.0, em = 2.0 with Es = 0, (b) for E,? = 6.0, cm = 2.0 
and E, # 0 and (c) for G.~ = 6, = 1. The last case corresponds to a hydrogen atom in 
half-space. For the three curves, the electronic energy decreases continuously from a value 
corresponding to the ground state of a hydrogen atom in free space (equation (22)) to that 
of the ground state of a hydrogen atom on the surface of an impenetrable medium (equation 
(25)), both calculated with a Gaussian variational spectrum. We note that the effect of the 
polarizability of the crystal is to decrease the binding energy from case c to case a. These 
polarizability effects can be divided into two parts: the screening of the proton and the self- 
energy of the electron in its image potential. The proton screening decreases the electron 
energy by a factor of about 10 (2.9 eV) for a surface proton as seen if curves a and c are 
compared. The effect of the electron image energy is to increase the binding energy of the 
electron as seen from a comparison of curves a and b the binding energy is increased by 
0.4 eV when the proton is on the surface. 

A Elmahboubi and Y Upine 
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Figure 5. EO, Ex, Ep and E, as a function of  zp ,  the 
distance ofthe proton from the surface, for fs = 2.1 and 
20. AU quantities are in the polaron system of unin. 

Figure 6. Ground-sate energy of the electron as a 
function of e, for+ = -0.5.0.0 and 0.5. AI1 quantities 
are in the pol”  system of units. 

In figure 5, we have separated the three different components of the ground-state energy 
EO = EW + Ep + E s ,  as a function of z,,. Far outside the crystal, we find that the surface 
interaction term (E3)  is negligible. The kinetic and the Coulomb terms dominate the electron 
behaviour. When the proton is far inside the crystal, it is Es that is the most important term, 
the electron being trapped in a surface image state. When the proton is in the neighbourhood 
of the surface, all energies are of the same order of magnitude. Note the maximum in the 
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kinetic energy around z, = 0.1. This corresponds to the increase in ,9 when the electron 
wavefunction begins to be compressed by the surface. From that point, when the electron 
gets nearer to the surface, Ek and E,, decrease rapidly because of the screening of the 
proton. Corresponding to the maximum of Ea, we also observe a minimum in Ex.  This 
results from the localization of the electron wavefunction and its effect on the image state. 

In figure 6, we plot the ground-state energy of the electron as a function of cs for 
z p  = -0.5, 0.0 and 0.5. We see that the binding energy (-&).decreases when the static 
dielectric constant increases. This is a direct manifestation of the screening effects of the 
crystal on the charge of the proton. This effect is more pronounced when the proton is on 
the surface because the screening is then at its maximum. Note that if the proton is far 
inside the crystal, we have found the binding energy to increase with since in this case 
the surface energy dominates the Coulomb energy. 

5. Conclusions 

In this paper, the problem of a hydrogen atom in interaction with the surface of a 
polar semiconductor is investigated. We assume that the electron cannot penetrate the 
semiconductor, the vacuum level lying in the middle of an energy gap. The proton is 
treated as a static particle. We treat the problem from a microscopic point of view, in terms 
of electron-phonon and electron-exciton interactions. The electron ground-state energy is 
calculated using the Fock approximation of Matz and Burkey that gives an upper bound to 
the ground-state energy [6]. This approximation was shown to treat the electron dynamics 
correctly, to give good results in the calculation of image states and to be valid for any 
strength of interaction between the electron and the phonons or the excitons [7]. It is 
expected to give good results as long as the continuum approximation is valid, that is as 
long as the electron is not too close to the surface. The approach that we use can be 
compared to that of Babiker and lilley who treated this problem by numerically solving the 
Schrodinger equation of an electron in interaction with a proton and with their two image 
charges [4]. Our results are entirely compatible. In our case we have the advantage of 
treating the electron interaction with the surface dynamically and being able to analyse the 
different contributions to the electron binding energy easily. 

We have found that three effects are important for the binding of the electron to the 
proton and to the surface: (1) the reduction in binding energy coming from the screening of 
the proton charge by its image charge arising from the polarizability of the semiconductor 
surface, (2) the decrease in binding energy because the electron wavefunction has to vanish 
at the surface (this increases the kinetic energy of the electron because of the deformation 
of the wavefunction) and (3) the attraction of the electron by its image charge which has the 
effect of binding the electron to the surface. Far outside the surface, the electron is strongly 
hound to the proton. The effect of the surface is negligible. The Coulomb energy between 
the electron and the proton dominates the binding until the proton reaches a distance of 
about one Bohr radius from the surface. Then the decrease in Coulomb energy is dramatic 
(of the order of 95%), the above three effects approaching their maximum. When the proton 
enters deeply into the semiconductor, the screening of the proton charge is at its maximum 
and the electron is in a bound surface image state. Note. that the electron wavefunction is 
centred on the external proton until it reaches a distance of about one Bohr radius from the 
surface. 

In conclusion, we have studied the binding energy of a hydrogen atom as a function 
of the position of the proton with respect to the surface of a semiconductor. We have 
found that, due to various effects, the ionization energy decreases rapidly when the proton 
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approaches the surface. When the proton is inside the crystal, the electron becomes bound 
to the surface while the proton charge is screened by the semiconductor. We have analysed 
the different components of this reduction in binding energy and found that the deformation 
of the wavefunction that has to vanish at the surface is determining for the drop in binding 
energy at one Bohr radius from the surface. This approach is valid as long as the continuum 
approximation is valid. Thus, it excludes the description of the binding of the hydrogen atom 
to the surface by the formation of a chemical link. An atomic approach would he necessary 
to describe the chemisorption. Note also that a guide to the form of the potential curve for 
hydrogen interacting with the surface of a semiconductor can be obtained by adding the 
static interaction between the proton and the surface (Hi,) to the electron binding energy 
(equation (14)). As the present description is only valid in the continuum approximation 
and as the proton dynamics is neglected, this approach would only be valid far from the 
surface. 
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